Antisense SCL suppresses self-renewal and enhances spontaneous erythroid differentiation of the human leukaemic cell line K562. (2024)

  • Journal List
  • EMBO J
  • v.10(13); 1991 Dec
  • PMC453166

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsem*nt of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer | PMC Copyright Notice

Antisense SCL suppresses self-renewal and enhances spontaneous erythroid differentiation of the human leukaemic cell line K562. (1)

Link to Publisher's site

A R Green, E DeLuca, and C G Begley

Author information Copyright and License information PMC Disclaimer

Abstract

The SCL gene encodes a member of the helix-loop-helix family of transcription factors that have been implicated in regulation of differentiation and development. Although SCL mRNA is not detectable in normal thymocytes or peripheral T-lymphocytes, transcriptional activation occurs in T-cell tumours. A clue to the normal function of SCL has come from demonstration of high levels of SCL mRNA in erythroid cells. To illuminate the function of SCL in the erythroid lineage, an antisense SCL construct was introduced into the human erythroleukaemia cell line, K562. Cells electroporated with a vector containing antisense SCL grew more slowly than control cells which had received vector alone. Non-specific toxicity was excluded by showing that antisense SCL did not influence growth of Raji cells, a B-cell line that does not express endogenous SCL mRNA. Suppression of K562 growth was accompanied by increased spontaneous erythroid differentiation as measured by benzidine staining. K562 cells containing antisense SCL produced smaller colonies in agar and exhibited reduced clonogenicity compared with control cells. In addition, experiments in which K562 colonies were recloned showed that antisense SCL profoundly suppressed self-renewal of K562 cells. These data provide the first evidence that SCL promotes self-renewal in an erythroid cell line and raise the possibility that SCL may function to regulate proliferation of normal erythroid cells.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

4153
4154
4155
4156
4157
4158

Images in this article

Image on p.4154
Image on p.4155
Image on p.4156

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J, Hershfield MS, Haynes BF, Cohen DI, Waldmann TA, et al. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2031–2035. [PMC free article] [PubMed] [Google Scholar]
  • Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA, Kirsch IR. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10128–10132. [PMC free article] [PubMed] [Google Scholar]
  • Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6;61(1):49–59. [PubMed] [Google Scholar]
  • Benz EJ, Jr, Murnane MJ, Tonkonow BL, Berman BW, Mazur EM, Cavallesco C, Jenko T, Snyder EL, Forget BG, Hoffman R. Embryonic-fetal erythroid characteristics of a human leukemic cell line. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3509–3513. [PMC free article] [PubMed] [Google Scholar]
  • Bernard O, Guglielmi P, Jonveaux P, Cherif D, Gisselbrecht S, Mauchauffe M, Berger R, Larsen CJ, Mathieu-Mahul D. Two distinct mechanisms for the SCL gene activation in the t(1;14) translocation of T-cell leukemias. Genes Chromosomes Cancer. 1990 Jan;1(3):194–208. [PubMed] [Google Scholar]
  • Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H. Sequence-specific DNA binding by the c-Myc protein. Science. 1990 Nov 23;250(4984):1149–1151. [PubMed] [Google Scholar]
  • Boyd AW, Dunn SM, Fecondo JV, Culvenor JG, Dührsen U, Burns GF, Wawryk SO. Regulation of expression of a human intercellular adhesion molecule (ICAM-1) during lymphohematopoietic differentiation. Blood. 1989 May 15;73(7):1896–1903. [PubMed] [Google Scholar]
  • Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G, Baer R. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J. 1990 Oct;9(10):3343–3351. [PMC free article] [PubMed] [Google Scholar]
  • Canfield V, Emanuel JR, Spickofsky N, Levenson R, Margolskee RF. Ouabain-resistant mutants of the rat Na,K-ATPase alpha 2 isoform identified by using an episomal expression vector. Mol Cell Biol. 1990 Apr;10(4):1367–1372. [PMC free article] [PubMed] [Google Scholar]
  • Caudy M, Vässin H, Brand M, Tuma R, Jan LY, Jan YN. daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete-scute complex. Cell. 1988 Dec 23;55(6):1061–1067. [PubMed] [Google Scholar]
  • Chen Q, Cheng JT, Tasi LH, Schneider N, Buchanan G, Carroll A, Crist W, Ozanne B, Siciliano MJ, Baer R. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J. 1990 Feb;9(2):415–424. [PMC free article] [PubMed] [Google Scholar]
  • Cordle SR, Henderson E, Masuoka H, Weil PA, Stein R. Pancreatic beta-cell-type-specific transcription of the insulin gene is mediated by basic helix-loop-helix DNA-binding proteins. Mol Cell Biol. 1991 Mar;11(3):1734–1738. [PMC free article] [PubMed] [Google Scholar]
  • Cullen BR, Lomedico PT, Ju G. Transcriptional interference in avian retroviruses--implications for the promoter insertion model of leukaemogenesis. Nature. 1984 Jan 19;307(5948):241–245. [PubMed] [Google Scholar]
  • Emerman M, Temin HM. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell. 1984 Dec;39(3 Pt 2):449–467. [PubMed] [Google Scholar]
  • Friend C, Scher W, Holland JG, Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1971 Feb;68(2):378–382. [PMC free article] [PubMed] [Google Scholar]
  • Gonda TJ, Sheiness DK, Bishop JM. Transcripts from the cellular hom*ologs of retroviral oncogenes: distribution among chicken tissues. Mol Cell Biol. 1982 Jun;2(6):617–624. [PMC free article] [PubMed] [Google Scholar]
  • Green AR, Salvaris E, Begley CG. Erythroid expression of the 'helix-loop-helix' gene, SCL. Oncogene. 1991 Mar;6(3):475–479. [PubMed] [Google Scholar]
  • Gusella J, Geller R, Clarke B, Weeks V, Housman D. Commitment to erythroid differentiation by friend erythroleukemia cells: a stochastic analysis. Cell. 1976 Oct;9(2):221–229. [PubMed] [Google Scholar]
  • Holt JT, Redner RL, Nienhuis AW. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mol Cell Biol. 1988 Feb;8(2):963–973. [PMC free article] [PubMed] [Google Scholar]
  • Horton MA, Cedar SH, Edwards PA. Expression of red cell specific determinants during differentiation in the K562 erythroleukaemia cell line. Scand J Haematol. 1981 Oct;27(4):231–240. [PubMed] [Google Scholar]
  • Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  • Ludwig SR, Wessler SR. Maize R gene family: tissue-specific helix-loop-helix proteins. Cell. 1990 Sep 7;62(5):849–851. [PubMed] [Google Scholar]
  • Lüscher B, Eisenman RN. New light on Myc and Myb. Part I. Myc. Genes Dev. 1990 Dec;4(12A):2025–2035. [PubMed] [Google Scholar]
  • Marks PA, Rifkind RA. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–448. [PubMed] [Google Scholar]
  • Matsushime H, Roussel MF, Ashmun RA, Sherr CJ. Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell. 1991 May 17;65(4):701–713. [PubMed] [Google Scholar]
  • Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. [PubMed] [Google Scholar]
  • Pongubala JM, Atchison ML. Functional characterization of the developmentally controlled immunoglobulin kappa 3' enhancer: regulation by Id, a repressor of helix-loop-helix transcription factors. Mol Cell Biol. 1991 Feb;11(2):1040–1047. [PMC free article] [PubMed] [Google Scholar]
  • Rowley PT, Ohlsson-Wilhelm BM, Farley BA, LaBella S. Inducers of erythroid differentiation in K562 human leukemia cells. Exp Hematol. 1981 Jan;9(1):32–37. [PubMed] [Google Scholar]
  • Ruezinsky D, Beckmann H, Kadesch T. Modulation of the IgH enhancer's cell type specificity through a genetic switch. Genes Dev. 1991 Jan;5(1):29–37. [PubMed] [Google Scholar]
  • Rutherford TR, Clegg JB, Weatherall DJ. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature. 1979 Jul 12;280(5718):164–165. [PubMed] [Google Scholar]
  • Spencer CA, Groudine M. Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res. 1991;56:1–48. [PubMed] [Google Scholar]
  • Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J. 1988 Jul;7(7):2175–2183. [PMC free article] [PubMed] [Google Scholar]
  • Tso JY, Sun XH, Kao TH, Reece KS, Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485–2502. [PMC free article] [PubMed] [Google Scholar]
  • Villares R, Cabrera CV. The achaete-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their hom*ology to myc. Cell. 1987 Jul 31;50(3):415–424. [PubMed] [Google Scholar]
  • Visvader J, Begley CG. Helix-loop-helix genes translocated in lymphoid leukemia. Trends Biochem Sci. 1991 Sep;16(9):330–333. [PubMed] [Google Scholar]
  • Kouzarides T, Packham G, Cook A, Farrell PJ. The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with hom*ology to the C/EBP leucine zipper. Oncogene. 1991 Feb;6(2):195–204. [PubMed] [Google Scholar]
  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. [PubMed] [Google Scholar]
  • Wickstrom EL, Bacon TA, Gonzalez A, Lyman GH, Wickstrom E. Anti-c-myc DNA increases differentiation and decreases colony formation by HL-60 cells. In Vitro Cell Dev Biol. 1989 Mar;25(3 Pt 1):297–302. [PubMed] [Google Scholar]
  • Andersson LC, Jokinen M, Gahmberg CG. Induction of erythroid differentiation in the human leukaemia cell line K562. Nature. 1979 Mar 22;278(5702):364–365. [PubMed] [Google Scholar]
  • Aplan PD, Begley CG, Bertness V, Nussmeier M, Ezquerra A, Coligan J, Kirsch IR. The SCL gene is formed from a transcriptionally complex locus. Mol Cell Biol. 1990 Dec;10(12):6426–6435. [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

Antisense SCL suppresses self-renewal and enhances spontaneous erythroid differentiation of the human leukaemic cell line K562. (2024)
Top Articles
Latest Posts
Article information

Author: Patricia Veum II

Last Updated:

Views: 5826

Rating: 4.3 / 5 (44 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Patricia Veum II

Birthday: 1994-12-16

Address: 2064 Little Summit, Goldieton, MS 97651-0862

Phone: +6873952696715

Job: Principal Officer

Hobby: Rafting, Cabaret, Candle making, Jigsaw puzzles, Inline skating, Magic, Graffiti

Introduction: My name is Patricia Veum II, I am a vast, combative, smiling, famous, inexpensive, zealous, sparkling person who loves writing and wants to share my knowledge and understanding with you.